Dietary fiber, dietary fibre, or sometimes roughage is the indigestible portion of plant foods having two main components:
It acts by changing the nature of the contents of the gastrointestinal tract and by changing how other nutrients and chemicals are absorbed.[2] Soluble fiber absorbs water to become a gelatinous, viscous substance and is fermented by bacteria in the digestive tract. Insoluble fiber has bulking action and is not fermented.[3] Lignin, a major dietary insoluble fiber source, may alter the fate and metabolism of soluble fibers.[1]
Chemically, dietary fiber consists of non-starch polysaccharides such as arabinoxylans, cellulose, and many other plant components such as resistant dextrins, inulin, lignin, waxes, chitins, pectins, beta-glucans, and oligosaccharides.[1] A novel position has been adopted by the US Department of Agriculture to include functional fibers as isolated fiber sources that may be included in the diet.[1] The term "fiber" is something of a misnomer, since many types of so-called dietary fiber are not actually fibrous.
Food sources of dietary fiber are often divided according to whether they provide (predominantly) soluble or insoluble fiber. Plant foods contain both types of fiber in varying degrees, according to the plant's characteristics.
Advantages of consuming fiber are the production of healthful compounds during the fermentation of soluble fiber, and insoluble fiber's ability (via its passive hygroscopic properties) to increase bulk, soften stool, and shorten transit time through the intestinal tract.
Disadvantages of a diet high in fiber is the potential for significant intestinal gas production and bloating. Constipation can occur if insufficient fluid is consumed with a high-fiber diet.
Contents |
Originally, fiber was defined to be the components of plants that resist human digestive enzymes, a definition that includes lignin and polysaccharides. The definition was later changed to also include resistant starches, along with inulin and other oligosaccharides.[3]
Dietary fiber is found in plants. While all plants contain some fiber, plants with high fiber concentrations are generally the most practical source.
Fiber-rich plants can be eaten directly. Or, alternatively, they can be used to make supplements and fiber-rich processed foods.
The American Dietetic Association (ADA) recommends consuming a variety of fiber-rich foods.
Some plants contain significant amounts of soluble and insoluble fiber. For example plums (or prunes) have a thick skin covering a juicy pulp. The plum's skin is an example of an insoluble fiber source, whereas soluble fiber sources are inside the pulp.[4]
Soluble fiber is found in varying quantities in all plant foods, including:
Sources of insoluble fiber include:
These are a few example forms of fiber that have been sold as supplements or food additives. These may be marketed to consumers for nutritional purposes, treatment of various gastrointestinal disorders, and for such possible health benefits as lowering cholesterol levels, reducing risk of colon cancer, and losing weight.
Soluble fiber supplements may be beneficial for alleviating symptoms of irritable bowel syndrome, such as diarrhea and/or constipation and abdominal discomfort.[6] Prebiotic soluble fiber products, like those containing inulin or oligosaccharides, may contribute to relief from inflammatory bowel disease,[7] as in Crohn's disease,[8] ulcerative colitis,[9][10] and Clostridium difficile,[11] due in part to the short-chain fatty acids produced with subsequent anti-inflammatory actions upon the bowel.[12][13] fiber supplements may be effective in an overall dietary plan for managing irritable bowel syndrome by modification of food choices.[14]
Chemically defined as oligosaccharides occurring naturally in most plants, inulins have nutritional value as carbohydrates, or more specifically as fructans, a polymer of the natural plant sugar, fructose. Inulin is typically extracted by manufacturers from enriched plant sources such as chicory roots or Jerusalem artichokes for use in prepared foods.[15] Subtly sweet, it can be used to replace sugar, fat, and flour, is often used to improve the flow and mixing qualities of powdered nutritional supplements, and has significant potential health value as a prebiotic fermentable fiber.[16]
Inulin is advantageous because it contains 25–30% the food energy of sugar or other carbohydrates and 10–15% the food energy of fat. As a prebiotic fermentable fiber, its metabolism by gut flora yields short-chain fatty acids (discussed above) which increase absorption of calcium,[17] magnesium,[18] and iron,[19] resulting from upregulation of mineral-transporting genes and their membrane transport proteins within the colon wall. Among other potential beneficial effects noted above, inulin promotes an increase in the mass and health of intestinal Lactobacillus and Bifidobacterium populations.
Vegetable gum fiber supplements are relatively new to the market. Often sold as a powder, vegetable gum fibers dissolve easily with no aftertaste. In preliminary clinical trials, they have proven effective for the treatment of irritable bowel syndrome.[20] Examples of vegetable gum fibers are guar gum and acacia Senegal gum.
The main action of dietary fiber is to change the nature of the contents of the gastrointestinal tract, and to change how other nutrients and chemicals are absorbed.[1][2] Soluble fiber binds to bile acids in the small intestine, making them less likely to enter the body; this in turn lowers cholesterol levels in the blood.[3] Soluble fiber also attenuates the absorption of sugar, reduces sugar response after eating, normalizes blood lipid levels and, once fermented in the colon, produces short-chain fatty acids as byproducts with wide-ranging physiological activities (discussion below). Although insoluble fiber is associated with reduced diabetes risk, the mechanism by which this occurs is unknown.[21]
Not yet formally proposed as an essential macronutrient, dietary fiber is nevertheless regarded as important for the diet, with regulatory authorities in many developed countries recommending increases in fiber intake.[1][2][22][23]
Research has shown that fiber may benefit health in several different ways. Lignin and probably related materials that are resistant to enzymatic degradation, diminish the nutritional value of foods.[24]
Color coding of table entries:
Functions | Benefits[25][26] |
---|---|
Increases food volume without increasing caloric content, providing satiety | May reduce appetite |
Attracts water and forms a viscous gel during digestion, slowing the emptying of the stomach and intestinal transit, shielding carbohydrates from enzymes, and delaying absorption of glucose[27] | Lowers variance in blood sugar levels |
Lowers total and LDL cholesterol | Reduces risk of cardiovascular disease |
Regulates blood sugar | May reduce glucose and insulin levels in diabetic patients and may lower risk of diabetes[28] |
Speeds the passage of foods through the digestive system | Facilitates regular defecation |
Adds bulk to the stool | Alleviates constipation |
Balances intestinal pH[29] and stimulates intestinal fermentation production of short-chain fatty acids | May reduce risk of colorectal cancer[30] |
Fiber does not bind to minerals and vitamins and therefore does not restrict their absorption, but rather evidence exists that fermentable fiber sources improve absorption of minerals, especially calcium.[31][32][33] Some plant foods can reduce the absorption of minerals and vitamins like calcium, zinc, vitamin C, and magnesium, but this is caused by the presence of phytate (which is also thought to have important health benefits), not by fiber.[34]
Current recommendations from the United States National Academy of Sciences, Institute of Medicine, suggest that adults should consume 20–35 grams of dietary fiber per day, but the average American's daily intake of dietary fiber is only 12–18 grams.[34][35]
The ADA recommends a minimum of 20–35 g/day for a healthy adult depending on calorie intake (e.g., a 2000 Cal/8400 kJ diet should include 25g of fiber per day). The ADA's recommendation for children is that intake should equal age in years plus 5 g/day (e.g., a 4 year old should consume 9 g/day). No guidelines have yet been established for the elderly or very ill. Patients with current constipation, vomiting, and abdominal pain should see a physician. Certain bulking agents are not commonly recommended with the prescription of opioids because the slow transit time mixed with larger stools may lead to severe constipation, pain, or obstruction.
The British Nutrition Foundation has recommended a minimum fiber intake of 18 g/day for healthy adults.[36]
On average, North Americans consume less than 50% of the dietary fiber levels recommended for good health. In the preferred food choices of today's youth, this value may be as low as 20%, a factor considered by experts as contributing to the obesity levels seen in many developed countries.[37][38]
Recognizing the growing scientific evidence for physiological benefits of increased fiber intake, regulatory agencies such as the Food and Drug Administration (FDA) of the United States have given approvals to food products making health claims for fiber.
In clinical trials to date, these fiber sources were shown to significantly reduce blood cholesterol levels, an important factor for general cardiovascular health,[39] and to lower risk of onset for some types of cancer.[40]
Soluble (fermentable) fiber sources gaining FDA approval are:
Other examples of fermentable fiber sources (from plant foods or biotechnology) used in functional foods and supplements include inulin, resistant dextrins, fructans, xanthan gum, cellulose, guar gum, fructooligosaccharides (FOS), and oligo- or polysaccharides.
Consistent intake of fermentable fiber through foods like berries and other fresh fruit, vegetables, whole grains, seeds, and nuts is now known to reduce risk of some of the world’s most prevalent diseases[41][42][43][44]—obesity, diabetes, high blood cholesterol, cardiovascular disease, and numerous gastrointestinal disorders. In this last category are constipation, inflammatory bowel disease, ulcerative colitis, hemorrhoids, Crohn’s disease, diverticulitis, and colon cancer—all disorders of the intestinal tract where fermentable fiber can provide healthful benefits.[41]
Insufficient fiber in the diet can complicate defecation.[45] Low-fiber feces are dehydrated and hardened, making them difficult to evacuate—defining constipation[45] and possibly leading to development of hemorrhoids[45] or anal fissures.
Although many researchers believe that dietary fiber intake reduces risk of colon cancer, one study conducted by researchers at the Harvard School of Medicine of over 88,000 women did not show a statistically significant relationship between higher fiber consumption and lower rates of colorectal cancer or adenomas.[46]
In June 2007, the British Nutrition Foundation issued a statement to define dietary fiber more concisely and list the potential health benefits established to date:[47][48]
‘Dietary fibre’ has been used as a collective term for a complex mixture of substances with different chemical and physical properties which exert different types of physiological effects. The use of certain analytical methods to quantify dietary fiber by nature of its indigestibility results in many other indigestible components being isolated along with the carbohydrate components of dietary fiber. These components include resistant starches and oligosaccharides along with other substances that exist within the plant cell structure and contribute to the material that passes through the digestive tract. Such components are likely to have physiological effects. Yet, some differentiation has to be made between these indigestible plant components and other partially digested material, such as protein, that appears in the large bowel. Thus, it is better to classify fiber as a group of compounds with different physiological characteristics, rather than to be constrained by defining it chemically. Diets naturally high in fiber can be considered to bring about several main physiological consequences:
Therefore, it is not appropriate to state that fiber has a single all encompassing physiological property as these effects are dependent on the type of fiber in the diet. The beneficial effects of high fiber diets are the summation of the effects of the different types of fiber present in the diet and also other components of such diets. Defining fiber physiologically allows recognition of indigestible carbohydrates with structures and physiological properties similar to those of naturally occurring dietary fibers.[48]
- helps prevent constipation
- reduces the risk of colon cancer
- improvements in gastrointestinal health
- improvements in glucose tolerance and the insulin response
- reduction of hyperlipidemia, hypertension, and other coronary heart disease risk factors
- reduction in the risk of developing some cancers
- increased satiety and hence some degree of weight management
Fiber, a type of carbohydrate, contributes less energy (measured in Calories or kilojoules) than sugars and starches because it cannot be fully absorbed by the body. Sugars and starches provide 4 Calories per gram, and the human body has specific enzymes to break them down into glucose, fructose, and galactose, which can then be absorbed by the body. The human body lacks enzymes to break down fiber. Insoluble fiber does not change inside the body, so the body cannot absorb it and nutritionists say that it contributes 0 Calories per gram. Soluble fiber is partially fermented, with the degree of fermentability varying with the type of fiber, and contributes some energy when broken down and absorbed by the body. Dietitians have not reached a consensus on how much energy is actually absorbed, but some approximate around 2 Calories (8.5 kilojoules) per gram of soluble fiber. Regardless of the type of fiber, the body absorbs fewer than 4 Calories (16.7 kilojoules) per gram of fiber, which can create inconsistencies for actual product nutrition labels. In some countries, fiber is not listed on nutrition labels, and is considered 0 Calories/gram when the food's total Calories are computed. In other countries all fiber must be listed, and is considered 4 Calories per gram when the food's total Calories are computed (because chemically fiber is a type of carbohydrate and other carbohydrates contribute 4 Calories per gram). In the US, soluble fiber must be counted as 4 Calories per gram, but insoluble fiber may be (and usually is) treated as 0 Calories per gram and not mentioned on the label.
The American Association of Cereal Chemists has defined soluble fiber this way: “the edible parts of plants or similar carbohydrates resistant to digestion and absorption in the human small intestine with complete or partial fermentation in the large intestine.”[49] In this definition:
As an example of fermentation, shorter-chain carbohydrates (a type of fiber found in legumes) cannot be digested, but are changed via fermentation in the colon into short-chain fatty acids and gases (which are typically expelled as flatulence).
According to a 2002 journal article,[41] fibers compounds with partial or low fermentability include:
fiber compounds with high fermentability include:
When soluble fiber is fermented, short-chain fatty acids (SCFA) are produced. SCFAs are involved in numerous physiological processes promoting health, including:[50]
SCFAs that are absorbed by the colonic mucosa pass through the colonic wall into the portal circulation (supplying the liver), and the liver transports them into the general circulatory system.
Overall, SCFAs affect major regulatory systems, such as blood glucose and lipid levels, the colonic environment, and intestinal immune functions.[53][54]
The major SCFAs in humans are butyrate, propionate, and acetate, where butyrate is the major energy source for colonocytes, propionate is destined for uptake by the liver, and acetate enters the peripheral circulation to be metabolized by peripheral tissues.
The FDA allows producers of foods containing 1.7g per serving of psyllium husk soluble fiber or 0.75g of oat or barley soluble fiber as beta-glucans to claim that reduced risk of heart disease can result from their regular consumption.[55]
The FDA statement template for making this claim is: Soluble fiber from foods such as [name of soluble fiber source, and, if desired, name of food product], as part of a diet low in saturated fat and cholesterol, may reduce the risk of heart disease. A serving of [name of food product] supplies __ grams of the [necessary daily dietary intake for the benefit] soluble fiber from [name of soluble fiber source] necessary per day to have this effect.[55]
Eligible sources of soluble fiber providing beta-glucan include:
The allowed label may state that diets low in saturated fat and cholesterol and that include soluble fiber from certain of the above foods “may” or “might” reduce the risk of heart disease.
As discussed in FDA regulation 21 CFR 101.81, the daily dietary intake levels of soluble fiber from sources listed above associated with reduced risk of coronary heart disease are:
Soluble fiber from consuming grains is included in other allowed health claims for lowering risk of some types of cancer and heart disease by consuming fruit and vegetables (21 CFR 101.76, 101.77, and 101.78).[55]
A study of 388,000 adults ages 50 to 71 for nine years found that the highest consumers of fiber were 22% less likely to die over this period.[57] In addition to lowering the risk of death from heart disease, adequate consumption of fiber-containing foods, especially grains, also appeared to reduce the incidence of infectious and respiratory illnesses, and, particularly among males, lowered the risk of cancer-related death.